TStnSVF Mistag Asymmetry

Shawn Kwang Mel Shochet

University of Chicago

Introduction

- Mistag Asymmtry Analysis
 - Description
 - Data and Templates
 - Results

Motivation - My Analysis

Top diagram - Signal H_0 -> a_0 , a_0 ->bbbar,bbbar with A0 $c\tau \sim 1$ cm

Bottom diagram - Bkgd QCD dijet bbbar

- Top diagram is the signal, bottom diagram is a typical dijet bbbar event.
- Primary vertex is the gray X inscribed in a circle.
 - ightharpoonup The a_0 (S) is a heavy pseudo-scalar from the Hidden-Valley model.
- A d0 cut on a track (in green) would remove tracks from any signal.

3

Description

- Mistag asymmetry is a measurement of the asymmetry in negative tagged jets.
 - Ideally negative tagged jets would be light quark jets. But reality this doesn't happen.
 - In addition, the positive tagged light quark fraction is larger due material effects and decays of K_s and Λ .
- To correct from the negative tag rate to the mistag rate we calculate two variables, α and β , defined below.

$$\alpha = N^{+}_{light} / N^{-}_{light} + N^{-}_{heavy}$$

$$\beta = N^{\text{pretag}}_{\text{light}} + N^{\text{pretag}}_{\text{heavy}} / N^{\text{pretag}}_{\text{light}}$$

$$\sim \alpha \beta R_{\text{mistag}}^{-} = N_{\text{light}}^{+} / N_{\text{pretag}}^{\text{pretag}}$$

- ightharpoonup pretag is defined as a jet which passes the fiducial E_τ and η cuts.
- ightharpoonup Thus αxβ is a correction to the negative tag rate.

MAsym. Data

- The MAsym. analysis uses data from the four JET triggers: JET_20, JET_50, JET_70, and JET_100; periods 0-8
 - gjt10x, gjt20x, gjt30x, gjt40x
 - Where x is "d," "h," and part of "i."
- The analysis also uses the four corresponding Pythia QCD dijet data samples for $p_{\scriptscriptstyle T}$ 18, 40, 60, and 90
 - btopqb, btoprb, btopsb, btoptb
- To account for the different jet E_T turn-on between data and MC, MC events smear the leading jet E_T with a Gaussian turn on at 5 GeV below the corresponding jet sample trigger threshold with a 5 GeV width.
 - btopqb (18) was smeared with a Gaussian mean of 15 GeV (JET_20 5).
- \blacktriangleright The data and MC were then split into separate $\mathsf{E}_{\scriptscriptstyle\mathsf{T}}$ bins.
 - $E_{\tau} = 10, 22, 40, 60, 1000 \text{ GeV}.$
- The MC was further weighted by the relative tag fractions from the data.
 - btopqb was weighed to JET_20, etc.
 - ▶ Rel. fraction = the number of tagged jets in an E_{τ} bin/all tagged jets from the sample.

Method

- The method uses is identical to that in CDF Notes 9277 and 8626.
 - We fit the positive-negative tag excesses in b/c/l quark templates to data, using the signed vertex mass as our primary variable.
 - The b/c/l jet fractions are extracted from the fit.
 - These fractions tell us the number of b/c/l quark jets in the data distribution.
- **From** these quantities we calculate α and β .
 - \triangleright α 's numerator is the fitted number of light quark jets in the data.
 - The denominator is just the total number of (positively) tagged jets.
 - \blacktriangleright For β, we first take the fit fractions and calculate the number of pretag b/c/l jets.
 - The b/c efficiencies from MC are used, multiplied by the Scale Factor from the muon method SF analysis.
 - The error on the scale factor for charm quarks is doubled.
 - \blacktriangleright The numerator of β is the the number of pretag jets number of bs and cs.
 - The denominator is the number of pretag jets.

Histograms

The MC templates, difference fit, and final fit for TStnSVF b-tagger tight operating point, E_T bin 22-40 GeV.

Table of Results

- **b** Below is the final table of α and $\alpha\beta$ for both b-taggers, tight operating point.
- Error shown are statistical.

TStnSVF-tight	10-22 GeV	22-40 GeV	40-60 GeV	60-1000 GeV
α	1.314± 0.108	1.305 ± 0.114	1.340± 0.103	1.452± 0.093
αβ	1.399± 0.115	1.416 ± 0.124	1.460 ± 0.112	1.559± 0.100
SecVtx-tight				
α	1.278± 0.122	1.230± 0.144	1.383± 0.107	1.449± 0.073
αβ	1.360 ± 0.130	1.339± 0.157	1.497 ± 0.116	1.553± 0.078

αβ

Shawn Kwang

 α and $\alpha\beta$ as a function of $\mathsf{E}_{_{\! T}} \mathsf{for}$ both TStnSVF and SecVtx, tight operating points.

Conclusions

Mistag Asymmetry analysis produces the same results for TStnSVF and SecVtx.

- Thanks to John F. for all his help.
- A CDF Note is in the works regarding TStnSVF and what you've seen in this presentation.
- Web page at URL:
 - http://www-cdf.fnal.gov/htbin/twiki/bin/view/ZtoBBbar/TStnSVF
 - Contains Additional Histograms and a full table of results.

